Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(14): e9531, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122262

RESUMO

RATIONALE: Sample preparation is one of the most crucial steps for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Scientists beginning their study with this technique may be overwhelmed by the variety of matrices, solvents, and concentrations; the methods of their applications; and the lack of widely available knowledge of the effect of these parameters on the results. Here we present in depth the aspects of matrix deposition, which will be helpful for the scientific community. METHODS: In this study, we tested several MALDI matrices, such as 2,5-dihydroxybenzoic acid (DHB), norharmane, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDC), and 9-aminoacridine (9AA), using the SunCollect system: wet-interface matrix deposition in the context of lipid analysis. We optimized the number of matrix layers and nozzle settings in terms of spectral intensity and the overall quality of the obtained ion maps. RESULTS: Our research presents the effect of the number of matrix layers and nozzle settings on the results and allows for choosing the optimal parameters for the analyses. In positive ionization mode, DHB matrix could be chosen first. In the negative ionization mode, 1,5-diaminonaphthalene matrix produces a higher peak intensity in a lower mass range and seems to provide more information than 9AA. We recommend NEDC for particular processes such as glucose analysis. Compared to the remaining matrices, norharmane shows significant changes in the obtained ion maps. CONCLUSIONS: Such a large amount of data allow us to observe an interesting conclusion: the obtained ion image for a particular ion could differ dramatically with a change in the matrix, the solvent composition, or even the number of matrix layers. This must be considered when interpreting the result, impelling us to compare the results obtained with different matrices with caution.


Assuntos
Hidroxibenzoatos , Lipídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Solventes , Lipídeos/análise , Lasers
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768263

RESUMO

Treatment of Post-Traumatic Stress Disorder (PTSD) is complicated by the presence of drug use disorder comorbidity. Here, we examine whether conditioned fear (PTSD model) modifies the rewarding effect of mephedrone and if repeated mephedrone injections have impact on trauma-related behaviors (fear sensitization, extinction, and recall of the fear reaction). We also analyzed whether these trauma-induced changes were associated with exacerbation in metalloproteinase-9 (MMP-9) and the GluN2A and GluN2B subunits of N-methyl-D-aspartate (NMDA) glutamate receptor expression in such brain structures as the hippocampus and basolateral amygdala. Male adolescent rats underwent trauma exposure (1.5 mA footshock), followed 7 days later by a conditioned place preference training with mephedrone. Next, the post-conditioning test was performed. Fear sensitization, conditioned fear, anxiety-like behavior, extinction acquisition and relapse were then assessed to evaluate behavioral changes. MMP-9, GluN2A and GluN2B were subsequently measured. Trauma-exposed rats subjected to mephedrone treatment acquired a strong place preference and exhibited impairment in fear extinction and reinstatement. Mephedrone had no effect on trauma-induced MMP-9 level in the basolateral amygdala, but decreased it in the hippocampus. GluN2B expression was decreased in the hippocampus, but increased in the basolateral amygdala of mephedrone-treated stressed rats. These data suggest that the modification of the hippocampus and basolateral amygdala due to mephedrone use can induce fear memory impairment and drug seeking behavior in adolescent male rats.


Assuntos
Medo , N-Metilaspartato , Animais , Masculino , Ratos , Extinção Psicológica , Metaloproteinase 9 da Matriz/metabolismo , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235029

RESUMO

A new series of 5-norbornene-2-carboxamide derivatives was prepared and their affinities to the 5-HT1A, 5-HT2A, and 5-HT2C receptors were evaluated and compared to a previously synthesized series of derivatives characterized by exo-N-hydroxy-5-norbornene-2,3-dicarboximidenucleus, in order to identify selective ligands for the above-mentioned subtype receptors. Arylpiperazines represents one of the most important classes of 5-HT1AR ligands, and recent research concerning new derivatives has been focused on the modification of one or more portions of such pharmacophore. The combination of structural elements (heterocyclic nucleus, propyl chain and 4-substituted piperazine), known to be critical to the affinity to 5-HT1A receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that Norbo-4 and Norbo-18 were the most active and promising derivatives for the serotonin receptor considered in this study.


Assuntos
Receptores de Serotonina , Serotonina , Ligantes , Simulação de Acoplamento Molecular , Norbornanos/farmacologia , Piperazina , Receptor 5-HT1A de Serotonina , Relação Estrutura-Atividade
4.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807228

RESUMO

Opioids are used to treat pain, but despite their effectiveness, they possess several side effects such as respiratory depression, tolerance and physical dependence. Cebranopadol has been evaluated as a solution to this problem. The compound acts on the mu opioid receptor and the nociceptin/orphanin receptor and these receptors co-activation can reduce opioid side-effects without compromising analgesia. In the present review, we have compiled information on the effects of cebranopadol, its pharmacokinetics, and clinical trials involving cebranopadol, to further explore its promise in pain management.


Assuntos
Compostos de Espiro , Analgésicos Opioides/efeitos adversos , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Dor/induzido quimicamente , Dor/tratamento farmacológico , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico
5.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216236

RESUMO

Mephedrone, a synthetic cathinone, is widely abused by adolescents and young adults. The aim of this study was to determine: (i) whether prior mephedrone exposure would alter ethanol reward and (ii) whether age and matrix metalloproteinase-9 (MMP-9) are important in this regard. In our research, male Wistar rats at postnatal day 30 (PND30) received mephedrone at the dose of 10 mg/kg, i.p., 3 times a day for 7 days. To clarify the role of MMP-9 in the mephedrone effects, one mephedrone-treated group received minocycline, as an MMP-9 antagonist. Animals were then assigned to conditioned place preference (CPP) procedure at PND38 (adolescent) or at PND69 (adult). After the CPP test (PND48/79), expression of dopamine D1 receptors (D1R), Cav1.2 (a subtype of L-type calcium channels), and MMP-9 was quantified in the rat ventral striatum (vSTR). The influence of mephedrone administration on the N-methyl-D-aspartate glutamate receptors (NMDAR) subunits (GluN1, GluN2A, and GluN2B) was then assessed in the vSTR of adult rats (only). These results indicate that, in contrast with adolescent rats, adult rats with prior mephedrone administration appear to be more sensitive to the ethanol effect in the CPP test under the drug-free state. The mephedrone effect in adult rats was associated with upregulation of D1R, NMDAR/GluN2B, MMP-9, and Cav1.2 signaling. MMP-9 appears to contribute to these changes in proteins expression because minocycline pretreatment blocked mephedrone-evoked sensitivity to ethanol reward. Thus, our results suggest that prior mephedrone exposure differentially alters ethanol reward in adolescent and adult rats.


Assuntos
Etanol/efeitos adversos , Metaloproteinase 9 da Matriz/metabolismo , Metanfetamina/análogos & derivados , Fatores Etários , Animais , Masculino , Metanfetamina/efeitos adversos , Ratos , Ratos Wistar , Recompensa , Transdução de Sinais/efeitos dos fármacos , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismo
6.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201982

RESUMO

During the last three decades, a variety of different studies on bioactive peptides that are opioid receptor ligands, have been carried out, with regard to their isolation and identification, as well as their molecular functions in living organisms. Thus, in this review, we would like to summarize the present state-of-the art concerning hemorphins, methodological aspects of their identification, and their potential role as therapeutic agents. We have collected and discussed articles describing hemorphins, from their discovery up until now, thus presenting a very wide spectrum of their characteristic and applications. One of the major assets of the present paper is a combination of analytical and pharmacological aspects of peptides described by a team who participated in the initial research on hemorphins. This review is, in part, focused on the analysis of endogenous opioid peptides in biological samples using advanced techniques, description of the identification of synthetic/endogenous hemorphins, their involvement in pharmacology, learning, pain and other function. Finally, the part regarding hemorphin analogues and their synthesis, has been added.


Assuntos
Peptídeos Opioides/metabolismo , Dor/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores Opioides/metabolismo , Animais , Humanos
7.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209274

RESUMO

Fetal alcohol spectrum disorders (FASDs) are one of the most common consequences of ethanol exposure during pregnancy. In adulthood, these disorders can be manifested by learning and memory deficits and depressive-like behavior. Ethanol-induced oxidative stress may be one of the factors that induces FASD development. The mammalian target of the Rapamycin (mTOR) signaling pathway that acts via two distinct multiprotein complexes, mTORC1 and mTORC2, can affect oxidative stress. We investigated whether mTOR-dependent or mTOR-independent mechanisms are engaged in this phenomenon. Thus, Rapamycin-a selective inhibitor of mTORC1, Torin-2-a non-selective mTORC1/mTORC2 inhibitor, and FK-506-a drug that impacts oxidative stress in an mTOR-independent manner were used. Behavioral tests were performed in adult (PND60-65) rats using a passive avoidance (PA) task (aversive learning and memory) and forced swimming test (FST) (depressive-like behaviors). In addition, the biochemical parameters of oxidative stress, such as lipid peroxidation (LPO), as well as apurinic/apyrimidinic (AP)-sites were determined in the hippocampus and prefrontal cortex in adult (PND65) rats. The rat FASD model was induced by intragastric ethanol (5 g/kg/day) administration at postnatal day (PND)4-9 (an equivalent to the third trimester of human pregnancy). All substances (3 mg/kg) were given 30 min before ethanol. Our results show that neonatal ethanol exposure leads to deficits in context-dependent fear learning and depressive-like behavior in adult rats that were associated with increased oxidative stress parameters in the hippocampus and prefrontal cortex. Because these effects were completely reversed by Rapamycin, an mTORC1 inhibitor, this outcome suggests its usefulness as a preventive therapy in disorders connected with prenatal ethanol exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão , Transtornos do Espectro Alcoólico Fetal , Deficiências da Aprendizagem , Estresse Oxidativo/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Depressão/metabolismo , Depressão/fisiopatologia , Depressão/prevenção & controle , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/fisiopatologia , Deficiências da Aprendizagem/prevenção & controle , Ratos , Ratos Wistar
8.
Behav Brain Res ; 410: 113326, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33940050

RESUMO

Perinatal alcohol exposure can lead to fetal alcohol spectrum disorders (FASD), usually first diagnosed in childhood, that are characterized by hyperactivity, impulsivity and learning and memory disability, among others. To test the hypothesis that dopamine signaling is one of the main factors underlying these impairments, a new atypical dopamine transporter (DAT) inhibitor, CE-123 (1, 3 or 10 mg/kg) was assessed for its potential to overcome the ethanol-induced behavioral effects in a rat model of FASD. In the present study, neonatal rats were exposed to alcohol intubations across the neonatal period (postnatal day (PND)4-9, the third trimester equivalent of human gestation) and, after weaning, the animals (male rats) were assigned randomly to three groups. The first group was tested at PND21 (hyperactivity test). A second group was tested at PND45 (anxiety test), at PND47 (locomotor activity test), at PND49 (spatial cognitive test in the Barnes maze) and PND50 (reversal learning in the Barnes maze). The third group was tested at PND50 (dopamine receptor mRNA expression). Our results support the hypothesis that dopamine signaling is associated with FASD because the dopamine (D1, D2 and D5) receptor mRNA expression was altered in the striatum, hippocampus and prefrontal cortex in adult rats exposed to ethanol during neonatal period. CE-123 (3 and 10 mg/kg) inhibited the hyperactivity and ameliorated (10 mg/kg) the impairment of reversal learning in alcohol-exposed rats. Thus, these findings provide support that CE-123 may be a useful intervention for same of the deficits associated with neonatal ethanol exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Agitação Psicomotora/tratamento farmacológico , Animais , Animais Recém-Nascidos , Compostos Benzidrílicos/administração & dosagem , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Dopaminérgicos/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Biomolecules ; 11(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924998

RESUMO

Ethanol exposure during pregnancy alters the mammalian target of rapamycin (mTOR) signaling pathway in the fetal brain. Hence, in adult rats exposed to ethanol during the neonatal period, we investigated the influence of rapamycin, an mTOR Complex 1 (mTORC1) inhibitor, on deficits in spatial memory and reversal learning in the Barnes maze task, as well as the ethanol-induced rewarding effects (1.0 or 1.5 g/kg) using the conditioning place preference (CPP) paradigm. Rapamycin (3 and 10 mg/kg) was given before intragastric ethanol (5 g/kg/day) administration at postnatal day (PND)4-9 (an equivalent to the third trimester of human pregnancy). Spatial memory/reversal learning and rewarding ethanol effect were evaluated in adult (PND60-70) rats. Additionally, the impact of rapamycin pre-treatment on the expression of the GluN2B subunit of NMDA receptor in the brain was assessed in adult rats. Our results show that neonatal ethanol exposure induced deficits in spatial memory and reversal learning in adulthood, but the reversal learning outcome may have been due to spatial learning impairments rather than cognitive flexibility impairments. Furthermore, in adulthood the ethanol treated rats were also more sensitive to the rewarding effect of ethanol than the control group. Rapamycin prevented the neonatal effect of ethanol and normalized the GluN2B down-regulation in the hippocampus and the prefrontal cortex, as well as normalized this subunit's up-regulation in the striatum of adult rats. Our results suggest that rapamycin and related drugs may hold promise as a preventive therapy for fetal alcohol spectrum disorders.


Assuntos
Etanol/toxicidade , Sirolimo/farmacologia , Aprendizagem Espacial/efeitos dos fármacos , Alcoolismo/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/metabolismo , Aprendizagem Espacial/fisiologia
10.
Biomolecules ; 11(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673489

RESUMO

The mammalian target of rapamycin (mTOR), a serine/ threonine kinase, is implicated in synaptic plasticity by controlling protein synthesis. Research suggests that ethanol exposure during pregnancy alters the mTOR signaling pathway in the fetal hippocampus. Thus, we investigated the influence of pre-treatment with rapamycin, an mTORC1 inhibitor, on the development of recognition memory deficits in adult rats that were neonatally exposed to ethanol. In the study, male and female rat pups received ethanol (5 g/kg/day) by intragastric intubation at postanatal day (PND 4-9), an equivalent to the third trimester of human pregnancy. Rapamycin (3 and 10 mg/kg) was given intraperitoneally before every ethanol administration. Short- and long-term recognition memory was assessed in the novel object recognition (NOR) task in adult (PND 59/60) rats. Locomotor activity and anxiety-like behavior were also evaluated to exclude the influence of such behavior on the outcome of the memory task. Moreover, the effects of rapamycin pre-treatment during neonatal ethanol exposure on the content of amino-acids and amines essential for the proper development of cognitive function in the dentate gyrus (DG) of the hippocampus was evaluated using proton magnetic resonance spectroscopy (1H MRS) in male adult (PND 60) rats. Our results show the deleterious effect of ethanol given to neonatal rats on long-term recognition memory in adults. The effect was more pronounced in male rather than female rats. Rapamycin reversed this ethanol-induced memory impairment and normalized the levels of amino acids and amines in the DG. This suggests the involvement of mTORC1 in the deleterious effect of ethanol on the developing brain.


Assuntos
Envelhecimento/fisiologia , Aminas/metabolismo , Aminoácidos/metabolismo , Giro Denteado/metabolismo , Etanol/toxicidade , Memória/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Animais Recém-Nascidos , Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Teste de Labirinto em Cruz Elevado , Etanol/administração & dosagem , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Ratos Wistar
11.
Arch Pharm (Weinheim) ; 354(5): e2000414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543794

RESUMO

A new series of norbornene and exo-N-hydroxy-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide derivatives was prepared, and their affinities to the 5-HT1A , 5-HT2A , and 5-HT2C receptors were evaluated and compared with a previously synthesized series of derivatives characterized by the same nuclei, to identify selective ligands for the subtype receptors. Arylpiperazines represent one of the most important classes of 5-HT1A R ligands, and the research of new derivatives has been focused on the modification of one or more portions of this pharmacophore. The combination of structural elements (heterocyclic nucleus, hydroxyalkyl chain, and 4-substituted piperazine), known to be critical for the affinity to 5-HT1A receptors, and the proper selection of substituents resulted in compounds with high specificity and affinity toward serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that 3e, 4j, and 4n were the most active and promising derivatives for the serotonin receptor considered in this study.


Assuntos
Simulação de Acoplamento Molecular , Piperazina/farmacologia , Receptores de Serotonina/metabolismo , Animais , Relação Dose-Resposta a Droga , Ligantes , Masculino , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435576

RESUMO

A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.


Assuntos
Anfetamina/farmacologia , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Metanfetamina/análogos & derivados , Córtex Pré-Frontal/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Fatores Etários , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Cognição/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Biomolecules ; 10(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998249

RESUMO

Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.


Assuntos
Antagonistas de Entorpecentes/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/uso terapêutico , Colecistocinina/metabolismo , Tolerância a Medicamentos , Humanos , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/uso terapêutico , Oligopeptídeos/metabolismo , Peptídeos Opioides/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Dor/patologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia , Nociceptina
14.
Pharmaceutics ; 12(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660138

RESUMO

Research demonstrates that adolescents differ from adults in their response to drugs of abuse. The aim of the present study was to examine the influence of ethanol, Δ9-tetrahydrocannabinol hydrochloride (THC), and a combination of these drugs given during adolescence on spatial memory in adolescent and adult rats. Thus, adolescent rats (postnatal day (PND) 30) were subjected to the following groups: 0.9% NaCl; 1.5 g/kg ethanol; 1.0 mg/kg THC; 1.5 g/kg ethanol + 1.0 mg/kg THC. Rats received drug injection four times at three-day intervals. One day after the last injection, half of the treated animals were tested in the Barnes maze task, whereas the remaining animals were tested on PND 70. Results show that there was a significant age effect on spatial memory in the Barnes maze task after these drug administrations. Adolescent animals demonstrated more potent deficits in the spatial learning and memory (probe trial) and in cognitive flexibility (reversal learning) than did adults. However, in adult rats that received these drugs in adolescence, memory decline was observed only after ethanol and ethanol + THC administration. Thus, our results are important in understanding the deleterious impact of THC and/or ethanol abuse during adolescence on memory function across the lifespan (adolescent versus adult).

15.
Biomolecules ; 10(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443872

RESUMO

: Metabotropic glutamate subtype 5 (mGlu5) receptors are implicated in various forms of synaptic plasticity, including drugs of abuse. In drug-addicted individuals, associative memories can drive relapse to drug use. The present study investigated the potential of the mGlu5 receptor positive allosteric modulator (PAM), VU-29 (30 mg/kg, i.p.), to inhibit the maintenance of a learned association between ethanol and environmental context by using conditioned place preference (CPP) in rats. The ethanol-CPP was established by the administration of ethanol (1.0 g/kg, i.p. × 10 days) using an unbiased procedure. Following ethanol conditioning, VU-29 was administered at various post-conditioning times (ethanol free state at the home cage) to ascertain if there was a temporal window during which VU-29 would be effective. Our experiments indicated that VU-29 did not affect the expression of ethanol-induced CPP when it was given over two post-conditioning days. However, the expression of ethanol-CPP was inhibited by 10-day home cage administration of VU-29, but not by first 2-day or last 2-day injection of VU-29 during the 10-day period. These findings reveal that VU-29 can inhibit the maintenance of ethanol-induced CPP, and that treatment duration contributes to this effect of VU-29. Furthermore, VU-29 effect was reversed by pretreatment with either MTEP (the mGlu5 receptor antagonist), or MK-801 (the N-methyl-D-aspartate-NMDA receptor antagonist). Thus, the inhibitory effect of VU-29 is dependent on the functional interaction between mGlu5 and NMDA receptors. Because a reduction in ethanol-associated cues can reduce relapse, mGlu5 receptor PAM would be useful for therapy of alcoholism. Future research is required to confirm the current findings.


Assuntos
Alcoolismo/tratamento farmacológico , Benzamidas/uso terapêutico , Pirazóis/uso terapêutico , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica , Animais , Benzamidas/farmacologia , Sinais (Psicologia) , Masculino , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5/agonistas , Recompensa
16.
Cytotechnology ; 72(3): 455-468, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32274610

RESUMO

Reproductive cells are a very special kind of material for the analysis. Depending on the species, their dimensions allow for the application of mass spectrometry imaging-based techniques to receive a reasonable data for interpretation of their condition without any additional sample preparation steps, except for typical sample preparation characteristic for IMS protocols. A comparison between lipid profiles of oocytes could answer the question of the overall quality of the cells in the function of time or conditions of storage. Even tiny differences in the lipid profiles, but still detectable by bioinformatic analysis, could be crucial for the estimation of the conditions of the cells in various stages of development or aging. In our study, MALDI-TOF/TOF MSI was used to analyze and visualize the single oocytes. We deposited the cells on the transparent indium-tin-oxide (ITO) glass and marked their positions, which allowed for the fast localization of the cells and precise laser targeting in the ion source. We also optimized the usage of different MALDI matrices and different approaches. The proposed way of measurement allows analyzing quite a significant quantity of oocytes in a reasonably short time. During the analysis, the lipid composition of the single cell was successfully estimated in a conventional usage of the MALDI ion source, and the localization of lipids was confirmed by imaging mass spectrometry (IMS) analysis. The observed quantity of the lipids allowed for the application of the LIFT™ technique to obtain MS/MS spectra sufficient for lipids' unambiguous identification. We hope that our idea of the oocyte analysis will help to elucidate chemical changes that accompany different processes in which oocytes are involved. There could be such fascinating phenomena as the oocyte maturation, changes in the lipid components during their storage, and much more.

17.
Behav Pharmacol ; 31(2&3): 272-282, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32168027

RESUMO

Acute and chronic ethanol intake, as well as ethanol withdrawal, exert learning disabilities. Of all the neurotransmitters in the brain, endogenous opioid peptides are thought to participate in ethanol effects. Kisspeptins, including kisspeptin-10, are peptides produced in the part of brain involved in the consolidation of memory and orientation. A new derivative of kisspeptin-10 is kissorphin (Tyr-Asn-Trp-Asn-Ser-Phe-NH2), a peptide with anti-opioid-activity. Hence, the aim of our study was to reveal whether kissorphin (1, 3, and 10 nmol, i.v.) was able to prevent or reverse learning deficits such as spatial memory retention and reversal learning induced by acute ethanol administration (1 × 1.75 g/kg., i.p.) and reversal learning induced by ethanol withdrawal (11-13 days from 'binge-like' ethanol input-5.0 g/kg, i.g. for 5 days) in the Barnes maze task in rats. Our study demonstrated that acute kissorphin administration prevented spatial memory (higher doses) impairments and attenuated reversal learning deficits induced by acute ethanol administration, although the reversal learning impairment may have been due to spatial learning impairments rather than cognitive flexibility impairments. Moreover, kissorphin given prior to first reversal learning trial for 3 consecutive days in the Barnes maze task during withdrawal from 'binge-like' ethanol administration, significantly attenuated cognitive flexibility impairment in the ethanol-withdrawal rats. In the acute and chronic ethanol experiments, kissorphin was the most effective at the dose of 10 nmol. In conclusion, the ethanol-induced spatial memory impairment may be reversed by pharmacological manipulation of the endogenous opioid system.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Kisspeptinas/farmacologia , Oligopeptídeos/farmacologia , Memória Espacial/efeitos dos fármacos , Consumo de Bebidas Alcoólicas , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Etanol/administração & dosagem , Etanol/efeitos adversos , Kisspeptinas/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Oligopeptídeos/metabolismo , Ratos , Ratos Wistar , Reversão de Aprendizagem/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
18.
Neurochem Int ; 133: 104616, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809774

RESUMO

Linagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor which suppresses the rapid degradation of endogenous glucagon-like peptide-1 (GLP-1). In clinical practice, it is used as an antidiabetic drug, but recent studies have confirmed its role in the activity of the central nervous system (CNS). The reported study focused on the role of linagliptin (10 and 20 mg/kg, ip) in the morphine rewarding effect, analyzing how the agent had influenced the conditioned place preference (CPP) in rats via the expression, acquisition, extinction and reinstatement of the morphine rewarding effect. The obtained results clearly demonstrated linagliptin to inhibit the expression and acquisition, to accelerate the extinction and, eventually, to reduce the reinstatement of morphine-induced CPP. The undertaken experiments significantly extended our knowledge on the mechanisms behind the morphine rewarding effect.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Linagliptina/farmacologia , Morfina/farmacologia , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Ratos Wistar
19.
Eur J Pharmacol ; 858: 172512, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31260653

RESUMO

The present study was conducted to evaluate the influence of AMN082, the metabotropic glutamate receptor subtype 7 (mGlu7) allosteric agonist on different stages of memory processes connected with fear conditioning in the passive avoidance (PA) learning task in mice and negative emotional state (anxiety-like) induced by ethanol- and morphine-withdrawal in the elevated plus maze (EPM) test in rats. To perform the PA test, AMN082 (1.25, 2.5 and 5 mg/kg, i. p.) was injected to interfere with (or inhibit) acquisition, consolidation, and retrieval processes. The retention latency in each group was recorded using a step-through passive avoidance task 24 h after training. In turn, in ethanol- and morphine-withdrawal rats, the influence of AMN082 on anxiety-like behavior was estimated in the EPM test 24 h- (ethanol) and 72- h (morphine) after the last dose of repeated drug administrations. In all experimental groups, AMN082 at the dose of 5 mg/kg significantly decreased the step-through latency of long-term memory in the PA task. These AMN082 effects were reversed by MMPIP (10 mg/kg), the antagonist of mGlu7 receptor. AMN082 (2.5 and 5 mg/kg) also decreased ethanol- and morphine withdrawal-induced anxiety-like behavior in the EPM test, and this AMN082 (5 mg/kg) effect was counteracted by MMPIP pretreatment. Taken together, the results show that mGlu7 is involved in fear learning to the context and anxiety-like state connected with unpleasant experiences after ethanol- and morphine withdrawal in rodents. However, it appears that functional dissociation exists between these two AMN082 effects.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Medo/efeitos dos fármacos , Medo/fisiologia , Memória/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Regulação Alostérica/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Compostos Benzidrílicos/uso terapêutico , Relação Dose-Resposta a Droga , Masculino , Consolidação da Memória/efeitos dos fármacos , Camundongos , Ratos , Síndrome de Abstinência a Substâncias/tratamento farmacológico
20.
Arch Pharm (Weinheim) ; 352(5): e1800373, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31025433

RESUMO

N'-Cyanoisonicotinamidine and N'-cyanopicolinamidine derivatives, linked to an arylpiperazine moiety, were prepared and their affinities to the 5-HT1A , 5-HT2A , and 5-HT2C receptors were evaluated. Several of the newly synthesized compounds, tested by binding studies, showed nanomolar affinity at the 5-HT1A and 5-HT2C receptors and moderate or no affinity for other relevant receptors (D1 , D2 , α1 , and α2 ). Compound 8e (Ki = 21.4 nM) was the most affine for the 5-HT2C receptor, showing, at the same time, a high selectivity with respect to the other receptors analyzed. Compounds 4a and 4c, instead, showed an interesting mixed 5-HT1A /5-HT2C activity with Ki values of 21.3/11.5 and 23.2/6.48 nM, respectively. The compounds with better affinity and selectivity binding profiles toward 5-HT2C (4a, 4c, 8b, and 8e) were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that compounds 4a, 8b, and 8e exerted antidepressant-like effects and 4a and 8e revealed also significant anxiolytic properties. Among the developed derivatives, the most promising compound seems to be 4a, which displayed antipsychotic-, antidepressant- and anxiolytic-like properties. No side effects, like catalepsy, motor-impairment or ethanol-potentiating effects, were observed after the injection of the tested compounds.


Assuntos
Amidinas/metabolismo , Antipsicóticos/farmacologia , Simulação de Acoplamento Molecular , Receptor 5-HT2C de Serotonina/metabolismo , Amidinas/síntese química , Amidinas/química , Amidinas/farmacologia , Antipsicóticos/síntese química , Antipsicóticos/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA